SDS1000X-U

Digital Oscilloscope

SSIGLENT ${ }^{\circledR}$

Data Sheet
Rev. DS010AH _E01A Sept. 2020

SDS1104X-U

Product Overview

SIGLENT's SDS1000X-U Series Super Phosphor Oscilloscopes is available in one bandwidth, 100 MHz . It has a maximum sample rate of $1 \mathrm{GSa} / \mathrm{s}$ and a maximum record length of 14 Mpts. For ease-of-use, the most commonly used functions can be accessed with its user-friendly front panel design. The SDS1000X-U series employs a new generation of SPO (Super -Phosphor Oscilloscope) technology that provides excellent signal fidelity and performance. It comes with an innovative digital trigger system with high sensitivity and low jitter, and a waveform capture rate of 400,000 frames/sec (sequence mode). The SDS1000X-U also employs a 256-level intensity grading display function and a color temperature display mode not found in other models in this class. SIGLENT's latest oscilloscope offering supports multiple powerful triggering modes including serial bus triggering. Serial bus decoding for IIC, SPI, UART, CAN, and LIN bus types are included. The X-U models also include History waveform recording and sequential triggering that enable extended waveform recording and analysis. Another powerful addition is the new 128k point FFT math function that gives the SDS1000X-U very high frequency resolution when observing signal spectra. The new digital design includes a hardware co-processor that delivers measurements quickly and accurately without slowing acquisition and front-panel response. SDS1000X-U also supports searching and navigating. The features and performance of SIGLENT's new SDS1000X-U cannot be matched anywhere else in this price class.

Key Features

- 100 MHz bandwidth

W- Real-time sampling rate up to $1 \mathrm{GSa} / \mathrm{s}$

- The newest generation of SPO technology

■ Waveform capture rates up to $100,000 \mathrm{wfm} / \mathrm{s}$ (normal mode) and 400,000 $\mathrm{wfm} / \mathrm{s}$ (sequence mode)
■ Supports 256-level intensity grading and color temperature display modes
■ Record length up to 14 Mpts
■ Digital trigger system

- Intelligent trigger: Edge, Slope, Pulse Width, Window, Runt, Interval, Time out (Dropout), Pattern

Serial bus triggering and decoding (Standard), supports protocols IIC, SPI, UART, CAN, LIN
\square Video trigger, supports HDTV

- 10 types of one-button shortcuts, supports Auto Setup, Default, Cursors, Measure, Roll, History, Display/Persist, Clear Sweep, Zoom and Print
\downarrow Segmented acquisition (Sequence) mode, divides the maximum record length into multiple segments (up to 80,000), according to trigger conditions set by the user, with a very small dead time segment to capture the qualifying event
N History waveform record (History) function (maximum recorded waveform length is 80,000 frames)
W. Automatic measurement function for 38 parameters as well as Measurement Statistics, Zoom, Gating, Math, History and Reference functions

128k pts FFT, supports Peaks and Markers

- Math and measurement functions use all sampled data points (up to 14 Mpts)
- Math functions (FFT, addition, subtraction, multiplication, division, integration, differential, square root)
- Preset key can be customized for user settings or factory "defaults"
- Security Erase mode

W High Speed hardware-based Pass/ Fail function
Search and navigate
L- Large 7-inch TFT-LCD display with 800 * 480 resolution
\downarrow Multiple interface types: USB Host, USB Device (USB TMC), LAN, Pass / Fail, Trigger Out

- Supports SCPI remote control commands
V. VXI-11+SCPI, Telnet (Port 5024) +SCPI and Socket (Port 5025) +SCPI programming over LAN
- Supports Multi-language display and embedded online

Models and Key Specifications

Model	SDS1104X-U
Bandwidth	100 MHz
Sample rate (Max.)	$1 \mathrm{GSa} / \mathrm{s}$ (One channel), 500 MSa/s(Two channels), $250 \mathrm{MSa} / \mathrm{s}$ (Four channels)
Channels	4
Memory depth (Max.)	14 Mpts
Waveform capture rate (Max.)	$100,000 \mathrm{wfm} / \mathrm{s}$ (normal mode), 400,000 wfm/s (sequence mode)
Trigger type	Edge, Slope, Pulse Width, Window, Runt, Interval, Dropout, Pattern, Video
Serial Trigger and decoder	IIC, SPI, UART, CAN, LIN
(Std)	USB Host, USB Device, LAN, Pass/Fail, Trigger Out
I/O	4 pcs passive probe PP510
Probe (Std)	7-inch TFT-LCD (800x480)
Display	Without package 2.6 kg; With package 3.8 kg
Weight	

Functions \& Characteristics

- 7 Inch TFT-LCD Display and 10 One-button Menus

- 7 -inch TFT -LCD display with 800 * 480 resolution
- Most commonly used functions are accessible using 10 different one-button operation keys: Auto Setup, Default, Cursor, Measure, Roll, History, Persist, Clear Sweep, Zoom, Print

N Record Length of up to 14 Mpts

Using hardware-based Zoom technologies and max record length of up to 14 Mpts , users are able to oversample to capture for longer time periods at higher resolution and use the zoom feature to see more details within each signal.

W Waveform Capture Rate up to $400,000 \mathrm{wfm} / \mathrm{s}$

With a waveform capture rate of up to $400,000 \mathrm{wfm} / \mathrm{s}$ (sequence mode), the oscilloscope can easily capture the unusual or low-probability events.

256-Level Intensity Grading and Color Temperature Display

SPO display technology provides fast refresh rates. The resulting intensity-graded trace is brighter for events that occur with more frequency and dims when the events occur with less frequency.

Serial Bus Decoding Function (Standard)

SDS1000X-U displays the decoding through the events list. Bus protocol information can be quickly and intuitively displayed in a tabular format.

The color temperature display is similar to the intensitygraded trace function, but the trace occurrence is represented by different colors (color "temperature") as opposed to changes in the intensity of one color. Red colors represent events that occur more frequently, while blue is used to mark points that occur less frequently
\square History Waveforms (History) Mode and Segmented Acquisition (Sequence)

Playback the latest triggered events using the history function. Segmented memory collection will store trigger events into multiple (Up to 80,000) memory segments, each segment will store triggered waveforms and timestamp of each frame.
T. True measurement to 14 M points

SDS1004X-U can measure all sampled data points up to 14 Mpts. This ensures the accuracy of measurements while the math co-processor decreases measurement time and increases ease-of-use.

128k points used to calculate the FFT

The new math co-processor enables FFT analysis of incoming signals using up to 128k samples per waveform. This provides high frequency resolution with a fast refresh rate. The FFT function also supports a variety of window functions so that it can adapt to different spectrum measurement needs. Four-channel series support Peaks, Markers, a variety of numbers.

G Gate and Zoom Measurement

Through Gate and Zoom measurement, the user can specify an arbitrary interval of waveform data analysis and statistics. This helps avoid measurement errors that can be caused by invalid or extraneous data, greatly enhancing the measurements' validity and flexibility.
4. Hardware-Based High-Speed Pass/Fail

The SDS1000X-U utilizes a hardware-based Pass/Fail function, performing up to 40,000 Pass / Fail decisions each second. Easily generate user defined test templates provide trace mask comparison making it suitable for longterm signal monitoring or automated production line testing.

N Customizable Default Key

The current parameters of the oscilloscope can be preset to Default Key through the Save menu.

Wearch and Navigate

The SDS1000X-U can search events specified by the user in a frame. It can also navigate by time (delay position) and historical frames.

4- Complete Connectivity

SDS1000X-U supports USB Host, USB Device (USB-TMC), LAN (VXI-11), Pass/Fail and Trigger Out

Specifications

Acquisition System

Sampling Rate (Max.)	$1 \mathrm{GSa} / \mathrm{s}$ (One channel), $500 \mathrm{MSa} / \mathrm{s}$ (Two channels), $250 \mathrm{MSa} / \mathrm{s}$ (Four channels)
Memory Depth (Max.)	14 Mpts
Peak Detect	2 ns
Average	Averages: $4,16,32,64,128,256,512,1024$
ERES	Enhance bits: $0.5,1,1.5,2,2.5,3$
Waveform interpolation	$\operatorname{Sin}(x) / x$, Linear

Input		
Channels	4	
Coupling	$\mathrm{DC}, \mathrm{AC}, \mathrm{GND}$	
Impedance	$\mathrm{DC}:(1 \mathrm{M} \Omega \pm 2 \%) \\|(15 \mathrm{pF} \pm 2 \mathrm{pF})$	
Max. Input voltage	$1 \mathrm{M} \Omega: \leq 400 \mathrm{Vpk}(\mathrm{DC}+$ Peak $\mathrm{AC}<=10 \mathrm{kHz})$	
CH to CH Isolation	$\mathrm{DC}-\mathrm{Max} \mathrm{BW}:>40 \mathrm{~dB}$	
Probe attenuation	$1 \mathrm{E}-6 \mathrm{X} \sim 1 \mathrm{E} 6 \mathrm{X}$	

Vertical System	
Bandwidth (-3dB)	100 MHz
Vertical Resolution	8-bit
Vertical Scale (Probe 1X)	$1 \mathrm{mV} / \mathrm{div}-10 \mathrm{~V} / \mathrm{div}$ (1-2-5 sequence)
Offset Range (Probe 1X)	$\begin{aligned} & 1 \mathrm{mV}-200 \mathrm{mV}: \pm 2 \mathrm{~V} \\ & 206 \mathrm{mV}-10 \mathrm{~V}: \pm 100 \mathrm{~V} \end{aligned}$
Bandwidth limit	$20 \mathrm{MHz} \pm 40 \%$
Bandwidth Flatness	$\begin{aligned} & \text { DC- } 10 \% \text { (BW): } \pm 1 \mathrm{~dB} \\ & 10 \%-50 \% \text { (BW): } \pm 2 \mathrm{~dB} \\ & 50 \%-100 \% \text { (BW): }+2 \mathrm{~dB} /-3 \mathrm{~dB} \end{aligned}$
Low frequency response (AC coupling -3 dB)	$\leq 2 \mathrm{~Hz}$ (at input BNC)
Noise	$\begin{aligned} & \text { ST-DEV } \leq 0.2 \text { division (}<2 \mathrm{mV} / \mathrm{div} \text {) } \\ & \text { ST-DEV } \leq 0.1 \text { division (} \geq 2 \mathrm{mV} / \mathrm{div} \text {) } \end{aligned}$
SFDR including harmonics	$\geq 35 \mathrm{~dB}$
DC Gain Accuracy	$\begin{aligned} & \leq \pm 3.0 \%: 5 \mathrm{mV} / \mathrm{div}-10 \mathrm{~V} / \mathrm{div} \\ & \leq \pm 4.0 \%: \leq 2 \mathrm{mV} / \mathrm{div} \end{aligned}$
Offset Accuracy	$\begin{aligned} & \pm\left(1 \%^{*} \text { Offset+1.5\%*8*div+2 mV): } \geq 2 \mathrm{mV} / \mathrm{div}\right. \\ & \pm\left(1 \%^{*} \text { Offset+1.5\%*8*div+500 uV): } 1 \mathrm{mv} / \mathrm{div}\right. \end{aligned}$
Rise time	Typical 3.5 ns

Overshoot (500 ps Pulse)	$<10 \%$
Horizontal System	
Timebase Scale	$2 \mathrm{~ns} / \mathrm{div}-100 \mathrm{~s} / \mathrm{div}$
Channel Skew	$<100 \mathrm{ps}$
Waveform Capture Rate	Up to 100,000 wfm/s (normal mode), 400,000 wfm/s (sequence mode)
Intensity grading	256 Levels
Display Format	$\mathrm{Y}-\mathrm{T}, \mathrm{X}-\mathrm{Y}$, Roll
Timebase Accuracy	$\pm 25 \mathrm{ppm}$
Roll Mode	$50 \mathrm{~ms} / \mathrm{div}-100 \mathrm{~s} /$ div (1-2-5 sequence)

Trigger System

Mode	Auto, Normal, Single
Level	Internal: ± 4.5 div from the center of the screen
Hold off range	80 ns- 1.5 s
Coupling	AC DC LFRJ HFRJ Noise RJ
Coupling Frequency Response	DC: Passes all components of the signal AC: Blocks DC components and attenuates signals below 8 Hz LFRJ: Blocks the DC component and attenuates the low-frequency components below 2 MHz HFRJ: Attenuates the high-frequency components above 1.2 MHz
Accuracy (typical)	Internal: ± 0.2 div
Sensitivity	DC - Max BW 0.6 div
Jitter	<100 ps
Displacement	Pre-Trigger: 0-100\% Memory Delay Trigger: 0 to 10,000 div
Edge Trigger	
Slope	Rising, Falling, Rising \& Falling
Source	All channels/AC Line
Slope Trigger	
Slope	Rising, Falling
Limit Range	<, >, < > , > <
Source	All channels
Time Range	2ns-4.2s
Resolution	1ns
Pulse Width Trigger	
Polarity	+wid, -wid
Limit Range	$<,>,<>$, > <

SDS1000X-U Series Digital Oscilloscope

Source	All channels
Pulse Range	2 ns -4.2s
Resolution	1 ns
Video Trigger	
Signal Standard	NTSC, PAL, 720p/50, 720p/60, 1080p/50, 1080p/60, 1080i/50, 1080i/60, Custom
Source	All channels
Sync	Any, Select
Trigger condition	Line, Field
Window Trigger	
Window Type	Absolute, Relative
Source	All channels
Interval Trigger	
Slope	Rising, Falling
Limit Range	$<,>,<>,><$
Source	All channels
Time Range	$2 \mathrm{~ns}-4.2 \mathrm{~s}$
Resolution	1 ns
Dropout Trigger	
Timeout Type	Edge, State
Source	All channels
Slope	Rising, Falling
Time Range	2 ns -4.2 s
Resolution	1 ns
Runt Trigger	
Polarity	+wid, -wid
Limit Range	$<,>,<>,><$
Source	All channels
Time Range	$2 \mathrm{~ns}-4.2 \mathrm{~s}$
Resolution	1 ns
Pattern Trigger	
Pattern Setting	Invalid, Low, High
Logic	AND, OR, NAND, NOR
Source	All channels
Limit Range	$<,>,<>,><$
Time Range	$2 \mathrm{~ns}-4.2 \mathrm{~s}$
Resolution	1 ns
Serial Trigger	
I2C Trigger	
Condition	Start, Stop, Restart, No Ack, EEPROM, 7-bits Address \& Data, 10-bits Address \& Data, Data Length
Source(SDA/SCL)	All channels
Data format	Hex
Limit Range	EEPROM: =, >, <
Data Length	EEPROM: 1byte

WWW.SIGLENT.COM

	Addr \& Data: 1-2byte
	Data Length: 1-12byte
R/W bit	Addr \& Data: Read, Write, Do not care
SPI Trigger	
Condition	Data
Source(CS/CL/Data)	All channels
Data format	Binary
Data Length	4-96-bit
Bit Value	0, 1, X
Bit Order	LSB, MSB
UART Trigger	
Condition	Start, Stop, Data, Parity Error
Source(RX/TX)	All channels
Data format	Hex
Limit Range	$=, \gg$
Data Length	1 byte
Data Width	5, 6, 7, 8-bits
Parity Check	None, Odd, Even, Space, Mark
Stop Bit	1, 1.5, 2-bits
Idle Level	High, Low
Baud Rate(Selectable)	600/1200/2400/4800/960019200/38400/57600/115200 bit/s
Baud Rate (Custom)	300-5000000 bit/s
CAN Trigger	
Condition	Start, Remote, ID, ID + Data, Error
Source	All channels
ID	STD (11-bits), EXT (29-bit)
Data Format	Hex
Data Length	1-2 byte
Baud Rate	5k/10k/20k/50k/100k/125k/250k/500k/800k/1 Mbit/s
LIN Trigger	
Condition	Break, Frame ID, ID+Data, Error
Source	All channels
ID	1byte
Data Format	Hex
Data Length	1-2byte
Baud Rate (Selectable)	600/1200/2400/4800/9600/19200 bit/s
Baud Rate (Custom)	$300 \mathrm{bit} / \mathrm{s}-20 \mathrm{kbit} / \mathrm{s}$

Search

Event	Edge, Slope, Pulse, Interval, Runt
Event Number	Y-T: 700

ROLL: No limitation
Stop After ROLL: 700

Serial Decoder

Decoders	2
I'C 2	SCL, SDA
Signal	7,10 bits
Address	$-4.5-4.5$ div
Threshold	$1-7$ lines
List	SCL,MISO, MOSI
SPI	Rising, Falling
Signal	Low, High
Edge Select	MSB, LSB
Idle Level	$-4.5-4.5$ div
Bit Order	$1-7$ lines
Threshold	RX, TX
List	$5,6,7,8$ bits
UART	None, Odd, Even, Space, Mark
Signal	$1,1.5,2$ bits
Data Width	Low, High
Parity Check	$-4.5-4.5$ div
Stop Bit	$1-7$ lines
Idle Level	CAN_H, CAN_L
Threshold	CAN_H, CAN_L
List	$-4.5-4.5$ div
CAN	Ver1.3, Ver2.0
Signal	
Source	Lines
Threshold	List

Measurement

Source

Number of
Measurements
Measurement Range
Measurement

All channels, All channels in Zoom, Math, All References, History
Display 4 measurements at the same time. 5 measurements displayed in statistics table.
Screen or Gate region
38Types

Parameters		
Vertical	Max	Highest value in input waveform
	Min	Lowest value in input waveform
	Pk-Pk	Difference between maximum and minimum data values
	Ampl	Difference between top and base in a bimodal signal, or between max and min in an unimodal signal
	Top	Value of most probable higher state in a bimodal waveform
	Base	Value of most probable lower state in a bimodal waveform
	Mean	Average of all data values
	Cmean	Average of data values in the first cycle
	Stdev	Standard deviation of all data values
	Cstd	Standard deviation of all data values in the first cycle
	VRMS	Root mean square of all data values
	Crms	Root mean square of all data values in the first cycle
	FOV	Overshoot after a falling edge;(base -min)/Amplitude
	FPRE	Overshoot before a falling edge;(max -top)/Amplitude
	ROV	Overshoot after a rising edge;(max -top)/Amplitude
	RPRE	Overshoot before a rising edge;(base -min)/Amplitude
	Level@X	the voltage value of the trigger point
Horizontal	Period	Time between the middle threshold points of two consecutive, likepolarity edges
	Freq	Reciprocal of period
	+Wid	Width measured at 50\% level and positive slope
	-Wid	Width measured at 50\% level and negative slope
	Rise Time	Duration of rising edge from $10-90 \%$
	Fall Time	Duration of falling edge from $90-10 \%$
	Bwid	Time from the first rising edge to the last falling edge, or the first falling edge to the last rising edge at the 50% crossing
	+Dut	Time difference between the 50% threshold of a rising edge to the 50% threshold of the next falling edge of the pulse
	-Dut	Time difference between the 50% threshold of a falling edge to the 50% threshold of the next rising edge of the pulse
	Delay	Time from the trigger to the first transition at the 50\% crossing
	Time@Level	Time from the trigger to each rising edge at the 50% crossing. When Statistics is Off, it shows the time from the trigger to the last rising edge at the 50% crossing. When Statistics is On, it shows the Current, Mean, Min, Max, Standard Deviation of time from the trigger to each rising edge at the 50% crossing in multiple frames (number = Count).
Delay	Phase	Phase difference between two edges
	FRR	Time from the first rising edge of channel A to the following first rising edge of channel B
	FRF	Time from the first rising edge of channel A to the following first falling

SDS1000X-U Series Digital Oscilloscope

		edge of channel B
	FFR	Time from the first falling edge of channel A to the following first rising edge of channel B
	FFF	Time from the first falling edge of channel A to the following first falling edge of channel B
	LRR	Time from the first rising edge of channel A to the last rising edge of channel B
	LRF	Time from the first rising edge of channel A to the last falling edge of channel B
	LFR	Time from the first falling edge of channel A to the last rising edge of channel B
	LFF	Time from the first falling edge of channel A to the last falling edge of channel B
	Skew	Time of source A edge minus time of nearest source B edge
Cursors	Man Volta Track	$\text { , (X1 -X2), (1/ } \Delta T)$ Y2) X1 -X2)
Statistics	Curre	Max, Stdev, Count
Counter	Hard	unter (channels are selectable)

Math	
Operation	$+, \quad-, \quad *, \quad /, \quad$ FFT $, \quad \mathrm{d} / \mathrm{dt}, \int \mathrm{dt}, \sqrt{ }$
FFT window	Rectangular, Blackman, Hanning, Hamming, Flattop
FFT display	Full Screen, Split, Exclusive

I/O	
Standard	USB Host, USB Device, LAN, Pass/Fail, Trigger Out
Pass/Fail	$3.3 V$ TTL Output

Display(Screen)

Display Type	7-inch TFT LCD
Display Resolution	800×480 pixels
Display Color	24 -bit
Contrast(Typical)	$500: 1$
Backlight	300 nits
Range	8×14 divisions

Display(Waveform)

Display Mode	Dot, Vector
Persist Time	Off, $1 \mathrm{Sec}, 5 \mathrm{Sec}, 10 \mathrm{Sec}, 30 \mathrm{Sec}$, Infinite
Color Display	Normal, Color
Screen Saver	$1 \mathrm{~min}, 5 \mathrm{~min}, 10 \mathrm{~min}, 30 \mathrm{~min}, 1$ hour, Off

WWW.SIGLENT.COM

Language	Simplified Chinese, Traditional Chinese, English, French, Japanese, Korean, German, Russian, Italian, Portuguese
Environments	Operating: $0^{\circ} \mathrm{C}-+40^{\circ} \mathrm{C}$ Non-operating: $-20^{\circ} \mathrm{C}-+60^{\circ} \mathrm{C}$
Temperature	Operating: $85 \% \mathrm{RH}, 40^{\circ} \mathrm{C}, 24$ hours Non-operating: $85 \% \mathrm{RH}, 65^{\circ} \mathrm{C}, 24$ hours
Humidity	Operating: $\leq 3000 \mathrm{~m}$ Non-operating: $\leq 15,000 \mathrm{~m}$
Height	

Standards

Electromagnetic compatibility	Meets EMC directive (2014/30/EU), meets or exceeds IEC 61326-1:2012/EN61326-1:2013 (Basic)		
	Conducted disturbance	CISPR 11/EN 55011	$\begin{aligned} & \text { CLASS A group } 1,150 \mathrm{kHz}- \\ & 30 \mathrm{MHz} \end{aligned}$
	Radiated disturbance	CISPR 11/EN 55011	$\begin{aligned} & \text { CLASS A group } 1, \quad 30 \mathrm{MHz}- \\ & 1 \mathrm{GHz} \end{aligned}$
	Electrostatic discharge (ESD)	IEC 61000-4-2/EN 61000-4-2	4.0 kV (Contact), 8.0 kV (Air)
	Radio-frequency electromagnetic field Immunity	IEC 61000-4-3/EN 61000-4-3	$\begin{aligned} & 10 \mathrm{~V} / \mathrm{m}(80 \mathrm{MHz} \text { to } 1 \mathrm{GHz}) \text {; } \\ & 3 \mathrm{~V} / \mathrm{m}(1.4 \mathrm{GHz} \text { to } 2 \mathrm{GHz}) ; \\ & 1 \mathrm{~V} / \mathrm{m}(2.0 \mathrm{GHz} \text { to } 2.7 \mathrm{GHz}) \end{aligned}$
	Electrical fast transients (EFT)	IEC 61000-4-4/EN 61000-4-4	2kV (Input AC Power Ports)
	Surges	IEC 61000-4-5/EN 61000-4-5	1 kV (Line to line) 2kV (Line to ground)
	Radio-frequency continuous conducted Immunity	IEC 61000-4-6/EN 61000-4-6	$3 \mathrm{~V}, 0.15-80 \mathrm{MHz}$
	Voltage dips and interruptions	$\begin{aligned} & \text { IEC 61000-4-11/EN 61000-4- } \\ & 11 \end{aligned}$	Voltage Dips: 0\% UT during 1 cycle; 40\% UT during 10/12 cycles; 70% UT during 25/30 cycles Voltage interruptions: 0\% UT during 250/300 cycles

Safety

UL 61010-1:2012/R: 2018-11; CAN/CSA-C22.2 No. 61010-1:2012/A1:2018-11.
UL 61010-2-030:2018; CAN/CSA-C22.2 No. 61010-2-030:2018.

Power Supply

Input Voltage

```
100 ~ 240 Vrms 50/60Hz
```

100 ~ 120 Vrms 400Hz

Power

50 W Max

Mechanical	Length: 312 mm
Dimensions	Width: 132.6 mm
	Height: 151 mm
Weight	N.W: $2.6 \mathrm{~kg} ; \mathrm{G.W}: 3.8 \mathrm{~kg}$

Frobes and Accessories

| Probe | Specifications \&Description |
| :--- | :--- | :--- |$|$| Passive | |
| :--- | :--- |

		CP5150	Bandwidth: 12 MHz, Max. continuous current: 150Arms, Peak current: 300A Switch Ratio: $100 \mathrm{mV} / \mathrm{A}, 10 \mathrm{mV} / \mathrm{A}$, Accuracy: $100 \mathrm{mV} / \mathrm{A}$ $(\pm 1 \% \pm 10 \mathrm{~mA}), 10 \mathrm{mV} / \mathrm{A}(\pm 1 \% \pm 100 \mathrm{~mA}), \mathrm{DC} 12 \mathrm{~V} / 1.2 \mathrm{~A}$ power adapter
		CP5500	Bandwidth: 5 MHz, Max. continuous current: 500Arms, Peak current: 750A Switch Ratio: $100 \mathrm{mV} / \mathrm{A}, 10 \mathrm{mV} / \mathrm{A}$, Accuracy: $100 \mathrm{mV} / \mathrm{A}$ $(\pm 1 \% \pm 10 \mathrm{~mA}), 10 \mathrm{mV} / \mathrm{A}(\pm 1 \% \pm 100 \mathrm{~mA}), \mathrm{DC} 12 \mathrm{~V} / 1.2 \mathrm{~A}$ power adapter
Differential Probe		DPB4080	Bandwidth: 50MHz, Differential Range: 800V (DC + Peak AC), 100X/200X/500X/1000X, Accuracy: $\pm 1 \%$, DC 9V/1A power adapter
		DPB5150	Bandwidth: 70MHz, Differential Range: 1500V (DC + Peak AC),50X/500X Accuracy: $\pm 2 \%$, DC 5V/1A USB adapter
		DPB5150A	Bandwidth: 100MHz, Differential Range: 1500V (DC + Peak AC), 50X/500X , Accuracy: $\pm 2 \%$ DC 5V/1A USB adapter
		DPB5700	Bandwidth: 70MHz, Differential Range: 7000V (DC + Peak AC), 100X/1000X , Accuracy: $\pm 2 \%$, DC 5V/1A USB adapter
		DPB5700A	Bandwidth: 100MHz Differential Range: 7000V (DC + Peak AC), 100X/1000X Accuracy: $\pm 2 \%$ DC 5V/1A USB adapter
High Voltage		HPB4010	```Bandwidth: 40MHz Differential Range: DC 10kV, AC (rms): 7kV (sine), AC (Vpp): 20kV (Pulse) 1000X``` Accuracy: $\leq 3 \%$
Isolated front end		ISFE	Provides isolation between standard oscilloscope channels, isolation between the measured signal and ground. Uses USB 5V power supply, plug and play. The maximum input voltage allowed is up to $\pm 600 \mathrm{Vpk}$.

Ordering Information

SSIGLENT ${ }^{\circledR}$

Abstract

About SIGLENT SIGLENT is an international high-tech company, concentrating on R\&D, sales, production and services of electronic test \& measurement instruments.

SIGLENT first began developing digital oscilloscopes independently in 2002. After more than a decade of continuous development, SIGLENT has extended its product line to include digital oscilloscopes, isolated handheld oscilloscopes, function/arbitrary waveform generators, RF/MW signal generators, spectrum analyzers, vector network analyzers, digital multimeters, DC power supplies, electronic loads and other general purpose test instrumentation. Since its first oscilloscope was launched in 2005, SIGLENT has become the fastest growing manufacturer of digital oscilloscopes. We firmly believe that today SIGLENT is the best value in electronic test \& measurement.

Headquarters:

SIGLENT Technologies Co., Ltd Add: Bldg No. 4 \& No.5, Antongda Industrial Zone, 3rd Liuxian Road, Bao'an District, Shenzhen, 518101, China
Tel: + 8675536887876
Fax: + 8675533591582
Email: sales@siglent.com
Website: int.siglent.com

USA:

SIGLENT Technologies America, Inc 6557 Cochran Rd Solon, Ohio 44139 Tel: 440-398-5800
Toll Free: 877-515-5551
Fax: 440-399-1211
Email: info@siglent.com
Website: www.siglentna.com

Europe:

SIGLENT Technologies Germany GmbH Add: Staetzlinger Str. 70 86165 Augsburg, Germany Tel: +49(0)-821-666 01110
Fax: +49(0)-821-666 011122
Email: info-eu@siglent.com
Website: www.siglenteu.com

ОФИЦИАЛЬНЫЙ ДИЛЕР В УКРАИНЕ:

storgom.ua

ГРАФИК РАБОТЫ:
Пн. - Пт.: с 8:30 по 18:30
Сб.: с 09:00 по 16:00
Вс.: с 10:00 по 16:00

KOHTAKTЫ:

+38 (044) 360-46-77
+38 (066) 77-395-77
+38 (097) 77-236-77
+38 (093) 360-46-77

Детальное описание товара: https://storgom.ua/product/siglent-166773.html Другие товары: https://storgom.ua/oscillografy.html

